
Sm
ar
tIn
fer

From RNNs to LLMs: A Concise Overview of

Deep Learning in NLP

Anjan Goswami

1 Introduction

Natural Language Processing (NLP) has witnessed profound advancements in
recent years, fundamentally reshaping how machines comprehend and interact
with human language. The primary aim of this tutorial is to offer readers an
insight into these pivotal developments, particularly emphasizing the revolu-
tionary strides made in the realm of language modeling. By journeying through
this tutorial, one would garner a holistic understanding of the cutting-edge
techniques and architectures that are currently pushing the boundaries of what
machines can achieve with human languages.

2 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are specifically designed to tackle sequence
modeling by preserving a memory of previous inputs. Unlike traditional n-
gram-based language models, which act as finite response systems and operate
as n-order Markov models, RNNs function as infinite response systems. This
means that, theoretically, they can produce an output of indefinite length from
a limited input. The mechanics of RNNs involve a recurrence equation, which
at every time step t, combines the current input with the hidden state vector
from the previous time step (t − 1). To kick-start this recursive process, an
initial state is defined. The subsequent mathematical representation delves into
the specifics of this mechanism:

2.1 Mathematical Definition

The RNN can be mathematically described as the following recursive equation:

ht = σ(W · ht−1 +U · xt + bh)

ot = V · ht + bo

The base case is:

h0 = initialization (often zeros)

1



Sm
ar
tIn
fer

where:

• xt ∈ Rdx×1: Input vector at time step t

• ht ∈ Rdh×1: Hidden state vector at time step t

• ot ∈ Rdo×1: Output vector at time step t

• U ∈ Rdh×dx : Weight matrix for input

• W ∈ Rdh×dh : Weight matrix for previous hidden state

• V ∈ Rdo×dh : Weight matrix for output

• bh ∈ Rdh×1: Bias vector for hidden state

• bo ∈ Rdo×1: Bias vector for output

• σ: activation function (e.g., sigmoid or tanh).

3 Limitations of RNNs

3.1 Vanishing and Exploding Gradients

In the context of RNNs, when computing gradients through backpropagation
through time (BPTT), the gradients can either vanish or explode. This is be-
cause the gradient is the product of several terms. Let’s consider an RNN with
the activation function f . The gradient of the loss L with respect to a particular
weight W for a time step t is given by:

∂L

∂W
∝

t∏
k=1

∂f(zk)

∂zk

When using an activation function like the sigmoid or tanh, the derivatives
can be very small, causing the gradient to vanish for larger values of t. On the
other hand, if the product becomes very large, the gradient can explode.

3.2 Limited Memory Capacity

The hidden state ht of an RNN at time step t is given by:

ht = f(Whht−1 +Wxxt + bh)

As t increases, the influence of initial states and inputs tends to diminish
due to multiplicative interactions. This can make it difficult for RNNs to retain
long-term dependencies.

3.3 Parallelization

Due to sequential dependencies, computing ht relies on the completed compu-
tation of ht−1, prohibiting parallelization.

2



Sm
ar
tIn
fer

4 Mitigations by LSTM and GRU

4.1 LSTM

LSTM introduces gating mechanisms that allow for controlled memory:

ft = σ(Wf [ht−1, xt] + bf ) – Forget Gate

it = σ(Wi[ht−1, xt] + bi) – Input Gate

C̃t = tanh(WC [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ot = σ(Wo[ht−1, xt] + bo) – Output Gate

ht = ot ⊙ tanh(Ct)

Through element-wise multiplication and additive interactions, LSTMs can
effectively retain or forget information. The cell state Ct can carry long-term
information due to these additive updates.

4.2 GRU

GRUs simplify the gating mechanism but still provide a mechanism to capture
long-term dependencies:

zt = σ(Wz[ht−1, xt] + bz) – Update Gate

rt = σ(Wr[ht−1, xt] + br) – Reset Gate

h̃t = tanh(W [rt ⊙ ht−1, xt] + b)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

The update and reset gates in GRU help in capturing dependencies over
different time scales.

4.3 Why LSTM and GRUs have better memory than reg-
ular RNNs:

1. Gating Mechanisms: The primary innovation in LSTMs and GRUs is
the introduction of gating mechanisms. These gates decide what informa-
tion gets passed through and what gets discarded or modified. This allows
them to capture and retain long-term dependencies effectively.

2. Additive Interactions: In standard RNNs, the hidden state is updated
through multiplicative interactions, which can cause rapid decay or growth
of values. LSTMs, on the other hand, have additive interactions (specifi-
cally in the cell state update mechanism), which allow values to be more
steadily passed along over longer sequences.

3



Sm
ar
tIn
fer

4.4 Limitations:

1. Still prone to vanishing or exploding gradient, albeit to a lesser
extent: The gating mechanisms in LSTMs and GRUs are designed to
mitigate the vanishing gradient problem, but they don’t eliminate it en-
tirely. For very long sequences, even LSTMs and GRUs can struggle to
capture all the information. However, the problem arises at much greater
sequence lengths compared to simple RNNs.

2. Complexity: LSTMs and GRUs introduce multiple weight matrices and
gating mechanisms, significantly increasing the computational and mem-
ory requirements. For instance, an LSTM has three gates (input, for-
get, and output) and an intermediate cell update. Each of these involves
its own weight matrices and operations. This makes LSTMs (and, to a
slightly lesser extent, GRUs) more computationally intensive than stan-
dard RNNs.

4.5 Complexity Increase:

1. Parameter-wise: LSTMs have more parameters than a standard RNN
for the same hidden layer size because of the multiple gates and cell state.
For a given input size n and hidden size h, a vanilla RNN has parameters
of the order O(nh+ h2). In contrast, an LSTM, with its three gates and
cell state, increases this to O(4nh+ 4h2).

2. Computationally: The forward pass in LSTMs and GRUs involves more
matrix multiplications and element-wise operations due to the additional
gates. This increases the computational burden, especially for larger mod-
els or longer sequences.

3. Memory: Because of the added gates and additional cell state (in the
case of LSTM), these models require more memory both in terms of model
parameters and intermediate computations during training.

In conclusion, while LSTMs and GRUs have been designed to address some
fundamental challenges in RNNs, they are not without their limitations. Their
increased complexity can make them slower to train and deploy. However, their
ability to capture longer-term dependencies has made them the preferred choice
for many sequence modeling tasks. It’s worth noting that newer architectures
like Transformers have been introduced, which offer alternative solutions to the
challenges of sequence modeling.

5 Transformer Architecture

The transformer model, introduced by Vaswani et al. in their 2017 paper ”At-
tention is All You Need,” has since become the foundation for many state-of-the-
art NLP models by addressing several limitations of traditional recurrent mod-
els, like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).

4



Sm
ar
tIn
fer

Central to transformers is the concept of attention, which allows them to weigh
the significance of different parts of input data differently. Early transformer-
based large language models (GPT and similar initial variants) are primarily
built upon two components: the encoder and the decoder. Both of these parts
utilize the self-attention mechanism, which allows the model to weigh input
tokens differently based on their relevance.

5.1 Encoder

The encoder’s main job is to process the input data and compress this infor-
mation into a context or a sequence of vectors. These vectors then serve as the
input for the decoder.

5.1.1 Multi-Head Self Attention

This mechanism allows the encoder to focus on different parts of the input for
different tasks or reasons. Instead of having one set of attention weights, it has
multiple sets (heads), which lets it capture various aspects of the input.

5.1.2 Position-wise Feed-Forward Networks

After the multi-head attention layer, the transformer uses feed-forward net-
works, which are applied to each position separately and identically.

5.1.3 Residual Connection

Each sub-layer (like multi-head attention or feed-forward neural network) in the
encoder is followed by a residual connection and a layer normalization.

5.2 Decoder

The decoder’s role is to produce the output data from the context provided by
the encoder.

5.2.1 Masked Multi-Head Self Attention

In the decoder, the self-attention mechanism works slightly differently. It en-
sures that the prediction for a particular word doesn’t depend on future words
in the sequence, which is achieved using masking.

5.2.2 Multi-Head Attention over Encoder’s Output

This layer helps the decoder focus on relevant parts of the input sentence, similar
to the way attention mechanisms work in seq2seq models with LSTMs.

5



Sm
ar
tIn
fer

5.2.3 Position-wise Feed-Forward Networks and Residual Connec-
tion

Just as in the encoder, the decoder also contains feed-forward networks and
residual connections.

6 Mathematics of Transformers

Let’s denote the input matrix as X. The first step involves computing the
attention scores. For simplicity, we’ll consider the scaled dot-product attention.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

Where:

• Q is the query matrix

• K is the key matrix

• V is the value matrix

• dk is the dimension of the keys

6.1 Advantages over RNNs

Unlike RNNs that process data sequentially, transformers leverage attention to
process data in parallel. This architectural distinction addresses several RNN
limitations:

• Parallelism: Transformers can process all data simultaneously. Due to
parallelization, they are more expansive for context capturing and deep
stacking.

• Vanishing and Exploding Gradients: The architecture is less susceptible
due to its non-recurrent nature.

• Memory: The attention mechanism allows for more extended memory
retention.

6.2 Architecture Variations

Encoder-Decoder: Two separate stacks for source and target.
Encoder-Only: Focuses on encoding input for tasks like embeddings.
Decoder-Only: Used primarily in LLMs for generative tasks.

6.3 Why Decoder-Only in LLMs?

Most recently many successful large language models have a decoder-only ar-
chitecture primarily because these are efficient for generative tasks, and reduce
complexity.

6



Sm
ar
tIn
fer

7 Zero-Shot and Few-Shot Learning in LLMs

In the realm of machine learning, the terms ”zero-shot,” ”one-shot,” and ”few-
shot” learning refer to the ability of a model to understand and perform tasks
that it hasn’t been explicitly trained on. For Large Language Models (LLMs),
this capability is particularly fascinating.

7.1 Zero-Shot Learning

Zero-shot learning pertains to the model’s capability to handle tasks without
seeing any explicit example during training. Given the right prompt, LLMs can
generate relevant outputs for tasks they haven’t been fine-tuned on.

7.2 Few-Shot Learning

In contrast, few-shot learning involves providing the model with a handful of
examples to help it grasp the task better. By showcasing the input-output
pattern through these examples, LLMs can effectively generalize the pattern
and apply it to novel inputs.

8 Prompt Engineering

Prompt engineering has emerged as an essential practice when working with
LLMs. Crafting the right prompt can drastically alter the output of the model.
While it seems simple, prompt engineering often requires an intricate under-
standing of how the model thinks and can be as much of an art as it is a
science. This topic’s depth and breadth, exploring various strategies and tech-
niques, would warrant an entirely separate discussion.

9 Fine-Tuning LLMs

Fine-tuning is a strategy used to tailor a pre-trained model (like an LLM) to a
specific task or domain by continuing training on a smaller, task-specific dataset.
This process can significantly boost performance in a specific task without re-
quiring training a model from scratch.

9.1 Common Fine-Tuning Techniques

9.1.1 Gradient-Based Fine-Tuning

This is the most straightforward fine-tuning method. It simply involves contin-
uing the training process on the new dataset and adjusting the model weights
using gradient descent.

7



Sm
ar
tIn
fer

9.1.2 Layer Freezing

In this technique, only a subset of the model’s layers is trained during the fine-
tuning phase. The remaining layers are kept frozen, preserving the knowledge
they have. This method is particularly useful when the fine-tuning dataset is
small, reducing the risk of overfitting.

9.1.3 Adaptive Learning Rates

Different learning rates might be used for different layers or parts of the model.
For instance, layers closer to the input might be fine-tuned with a slower learning
rate compared to the top layers.

9.1.4 Adapter Architecture

Adapter architectures add small, task-specific feed-forward networks (adapters)
between the layers of the original model. During fine-tuning, only these adapter
layers are trained, while the original model’s weights remain frozen. This ap-
proach allows for task-specific adaptations without altering the pre-trained pa-
rameters, ensuring efficient and modular fine-tuning.

9.2 Nontriviality of Fine-Tuning

Choosing the right fine-tuning strategy can significantly impact the performance
of the model on the target task. It’s essential to consider the size and quality of
the fine-tuning dataset. Using non-representative or low-quality data can lead
to suboptimal or even harmful model behaviors. Moreover, there’s a risk of
overfitting to the fine-tuning data due to its typically smaller size compared to
the initial training data.

10 The Role of High-Quality Data

Recent research indicates that with high-quality data, one can train smaller yet
more accurate models. We will later publish a tutorial on data and LLMs.

11 Limitations

Despite their success, transformers and LLMs are not without their challenges.
Issues like hallucinations, expensive computational costs, and unpredictability
still persist.

12 Conclusion

The transformative role of transformers in the field of NLP is undeniable. By
harnessing their unique ability to discern and attend to salient pieces of infor-

8



Sm
ar
tIn
fer

mation, these architectures have instigated a seismic shift in our understanding
and application of NLP techniques. However, as we stride forward, it is im-
perative that research efforts also concentrate on enhancing model reliability,
scalability, and controllability. It’s worth noting that this tutorial offers but
a glimpse into the vast expanse of NLP advancements. Many pertinent topics
and details have been reserved for more exhaustive discussions, underscoring
the depth and dynamism of this ever-evolving field.

9


